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Abstract

In this paper, we introduce Bayesian inference and sampling techniques necessary to estimate unknown

parameters of interest. We begin by discussing terminology used in Bayesian methods and then introduce

three common sampling techniques. The first is Gibbs Sampling and when it can be used. The second is

the Metropolis–Hastings algorithm and how it can be implemented in many situations. The last method,

which amends a particular aspect of Metropolis–Hastings, is the Bayesian version of the iterative re–

weighted least squares algorithm under a generalized linear model setup. Finally, we simulate each of

these methods and discuss the results.

1 Introduction

Bayesian inference is a method in which Baye’s rule is primarily used in order to obtain a posterior

distribution that can provide all information on unknown parameters of interest. One benefit of using

Bayesian methods rather than Frequentist methods is that instead of obtaining just point estimates and

confidence intervals for the parameters, a Bayesian obtains an entire distribution for the parameters of

interest (Hoff, 2010). For example, suppose that you flip a fair coin 100 times and record 64 heads and 36

tails. Would you consider the coin to be bias? As you can see, a Frequentist approach requires a larger

sample size to obtain a long–run frequency for a decent point–estimate. So why has Bayesian methods

become more popular in the past few decades? The answer is simply the invention of computers which
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now enable us to run some highly expensive simulations necessary as a Bayesian (West, 1985). This leads

us towards a Bayesian approach, where we include prior knowledge of the coin to assess its fairness.

The posterior distribution, if obtainable, provides all information on the unknown parameters. How-

ever, what if the posterior distribution is not of a recognizable form and so sampling from it is impossible?

There are a few reasons that may cause this. The first main reason is that the posterior distribution can-

not be completely specified due to reliance on other unknown parameters. In this case, Gibbs sampling

is a technique that draws samples from full–conditional distributions. A second reason that commonly

occurs is that the posterior distribution is not of recognizable form and so sampling cannot be done at

all. To remedy this, Metropolis–Hastings or iterative re–weighted least squares are algorithms that can

be used to acquire a sample. This method accounts for covariate information and a generalized linear

model framework is used (Gamerman, 1996). The framework of this method is built upon the assumption

that we have observations distributed according to some exponential family (Nelder, 1972). With these

sampling techniques, often referred to as Markov Chain Monte Carlo, or MCMC, we are able to obtain

a sample of our parameters as if we drew them directly from the posterior distribution, and hence giving

us the desired information (Grimmer, 2010).

2 Methods

2.1 Bayesian Inference

Bayesian techniques combine a priori information and data by the use of Baye’s rule to obtain a

posterior distribution. The a priori information specifies a prior distribution, denoted π(θ), that uses a

person’s belief of the true value of the parameters. The data specifies a likelihood function when given
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the unknown parameters, denoted f(y|θ). Notice that these are both functions of the parameters of

interest and we can apply Baye’s rule to formulate the posterior distribution as follows (Hoff, 2010)

f(θ|y) =
f(y|θ)π(θ)

f(y)
=

f(y|θ)π(θ)∫
Θ
f(y|θ)π(θ)dθ

∝ f(y|θ)π(θ). (1)

Generally, we can simplify the work by finding the distribution that is proportional to the posterior

distribution, and then integrating over the entire parameter space while setting equal to 1 to find the

normalizing constant. The posterior distribution is an update of the prior distribution after observing

the data. In most situations, this update may not yield a closed form and renders sampling practically

impossible. However, conjugate prior distributions to the likelihood function will ensure a recognizable

posterior distribution. A few examples of conjugate priors consist of Beta–Binomial, Normal–Normal,

and Gamma–Poisson. For example, suppose that we specify a conjugate prior for a single unknown

parameter θ and we have a random sample (independent and identically distributed) from a Poisson

distribution. That is to say that

prior : π(θ) =
βα

Γ(α)
θα−1e−βθ

likelihood: f(y|θ) =
n∏
i=1

θyi

yi!
e−θ.

Then by equation (1) above, we have that the posterior distribution becomes

f(θ|y) ∝
n∏
i=1

θyi

yi!
e−θ · βα

Γ(α)
θα−1e−βθ

∝ θ
∑n
i=1 yie−nθθα−1e−βθ

= θ(α+
∑n
i=1 yi)−1e−(n+β)θ.

Here we see that the posterior is still Gamma distributed. There are many more conjugate prior examples

that could potentially be useful. However, in practice, conjugate priors cannot typically be used.
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Before diving into the MCMCs discussed in this paper, we introduce the idea of a full–conditional

distribution. Notice that the posterior distribution in (1) is actually a joint distribution of the components

of θ. Assume that θ has length r, then we see that

f(θi|θ(−i),y) ∝ f(y|θ)π(θ) ∝ f(y|θ)π(θi|θ(−i)), (2)

where θ(−i) = (θ1, ..., θi−1, θi+1, ..., θr). Notice that here we do not need to include π(θ(−i)) since it has

nothing to do with the density of θi and is therefore just a part of the normalizing constant. The

distribution in equation (2) above is referenced as the full–conditional distribution of θi, since it is a

conditional distribution of θi given everything else. This allows the use of Gibbs Sampling, provided that

all full–conditionals are analytically obtainable.

2.2 Gibbs Sampling

The idea behind Gibbs sampling is to generate a sequence of samples of the unknown parameters

by using the full–conditional posterior distributions of each parameter of interest. To calculate the full–

conditional posteriors, we simply use equation (2) above. With these conditional distributions, we are able

to approximate the joint posterior distribution f(θ|y) by generating a dependent sequence of parameters.

Given an initial value for each component of θ, denoted θ
(0)
i for i = 1, ..., r, sample as follows

θ
(t+1)
i ∼ f(θi|θ(t)

(−i),y),

where θ
(t)
(−i) is a vector consisting of the current parameter estimates, excluding the ith component.

After each iteration, we update our parameter vector with the new sample value and proceed. Each

iteration consists of updating all r components of θ and after s iterations, this gives a dependent sequence

{θ(1),θ(2), ...,θ(s)}. With this sequence of samples, we can use the weak law of large numbers to induce
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properties such as

1

s

s∑
i=1

θ(i) −→ E[θ|y]

as s → ∞. That is, as we increase the number of iterations without bound, the mean of the sample

obtained from Gibbs sampling converges to the true mean (Hoff, 2010). Please see section 4 for a

simulation of Gibbs sampling. Next, we introduce the Metropolis–Hastings algorithm, which should be

used in the case where the full–conditionals are not analytically obtainable.

2.3 Metropolis–Hastings

Metropolis–Hastings is an MCMC technique that should be used when the posterior distribution is

not recognizable and therefore cannot be sampled from. Suppose that we have an initial value of our

parameters, θ(0). If we propose a new value θ? from some proposal distribution, say Jθ? , then an intuitive

idea is to include this value in our sample if the density of this proposed value is larger than the density

of the current parameter value. However, if the density is not greater than or equal to the density of the

current parameter, then we should accept the proposed value θ? with some probability. An instinctive

way to achieve this is to calculate the ratio of these densities, which can be done by equation (1) and the

use of a correction factor. The correction factor is the ratio of the proposal distribution used to propose

θ?, where the numerator is the proposal distribution evaluated at the current parameter value and the

denominator is the proposal distribution evaluated at the proposed value. As a result, we obtain the

acceptance ratio (Gamerman, 1996)

r =
f(θ?|y)

f(θ(t)|y)

J(θ(t)|θ?)
J(θ?|θ(t))

=
f(y|θ?)π(θ?)

f(y|θ(t))π(θ(t))

J(θ(t)|θ?)
J(θ?|θ(t))

. (3)
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After the acceptance ratio r has been computed, we set the next iteration parameter value to be

θ(t+1) =


θ? if r ≥ 1

θ? with probability r if r < 1.

There are a number of ways to achieve the second line above if r < 1. One way would be to generate a

uniform random variable between 0 and 1, and if this random variable has value less than r, set θ(t+1) = θ?.

Otherwise, we set θ(t+1) = θ(t). An important feature of the acceptance ratio above is that if the

proposal distribution is a symmetric distribution, then by definition we have that J(θ(t)|θ?) = J(θ?|θ(t)),

and therefore the correction factor is not necessary. A desirable property of the proposal distribution

is that the proposed value will get accepted between 20 and 50% of the time (Hoff, 2010) in order to

have low correlation in the sequence of parameter estimates, but to still allow the chain to move around

the parameter space to converge as efficiently as possible. Therefore, one must consider a proposal

distribution that has this property, and this can, in certain situations, be difficult. With this said, we

discuss in section 2.5 a smarter way to obtain a nice proposal distribution that will yield much higher

acceptance rates while keeping the correlation of the sequence of parameters low.

2.4 Generalized Linear Models (GLM)

The methods proposed in this paper thus far include only univariate models; however, in most realistic

scenarios, it is ideal to include covariate information into a model. To this end, we discuss what a

generalized linear model is and the three major components of a GLM. A generalized linear model is a

generalization of regular linear regression to response types other than normally distributed. The first,

and most obvious component, is the random variable. This will specify the conditional distribution of the
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response variable, Yi, given the covariates in the model. It is assumed that this distribution is a member

of the exponential family. The second component is a linear predictor, which is most commonly a linear

function of the regressors, denoted

ηi = X′iβ = β0 + β1xi1 + ...+ βpxip,

where Xi is a vector of covariates for the ith observation. The third requirement for a GLM is a smooth

and invertible link function, g(·), which relates the mean of the response variable to the linear predictor.

That is to say that if µi = E(Yi), then

g(µi) = ηi = X′iβ.

Recall that a distribution is a member of the exponential family if it can be written in the form

f(yi) = exp

{
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

}
. (4)

A link function that one can consider in every situation is the canonical link θi = ηi (Nelder and Wedder-

burn, 1972). However, there are many link functions that could be used, which depends on the situation

or beliefs of how the true mean structure is related to the predictors.

2.5 Bayesian Iterative Re–weighted Least Squares

The Bayesian version of the iterative re–weighted least squares was proposed by Mike West in 1985 for

the special case of using a canonical link θi = ηi; however, the method has a straight–forward extension

to other links. This algorithm mimics the iterative re–weighted least squares used by Frequentists in

order to obtain a nice proposal distribution to be used in a Metropolis–Hastings iteration. Under the

GLM framework, the parameters of interest include the regression coefficents vector β. We begin by
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placing a normal prior distribution on β, say N(a,R), to obtain a nice proposal distribution for β. More

specifically, the posterior distribution for β is considered to be of the form

f(β) ∝ exp

{
−1

2
(β − a)′R−1(β − a) +

∑
i

yiθi − b(θi)
φ

}
, (5)

where the first term in the exponential is from the prior distribution and the second term is the likelihood

term, which depends on β through θi (West, 1985). The idea is to approximate this posterior distribution,

which is the true posterior, with a normal distribution to be used as the proposal distribution. By carrying

out a second order Taylor expansion of the likelihood term

`(β) =
∑
i

yiθi − b(θi)
φ

around some value of β, say β(t−1), and combining terms, we obtain a normal distribution with mean

and covariance matrix

m(t) =

(
R−1 +

1

φ
X′W(β(t−1))X

)−1

×
(

R−1a +
1

φ
X′W(β(t−1))ỹ(β(t−1))

)
(5.1)

and

C(t) =

(
R−1 +

1

φ
X′W(β(t−1))X

)−1

(5.2)

respectively, that approximates the true posterior distribution in (5). This is the distribution used as the

proposal distribution, denoted by J(β). Notice that if we place a non–informative prior distribution on β,

i.e. R→∞ and so we are not narrowing the parameter space of β, then the original iterative re–weighted

least squares algorithm is recovered. Although this method draws similarities from the Fisher scoring

algorithm and iterative re–weighted least squares, there is an analogous construction of this approximate

posterior distribution under the Bayesian framework. Following the work of McCullagh and Nelder in
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1989, we define a vector of transformed observations ỹ(β) and an associated diagonal matrix of weights

W(β) with respective components

ỹi(β) = ηi + (yi − µi)g′(µi) and Wi(β) =
1

b′′(θi){g′(µi)}2
.

This transformation of the data and diagonal weight matrix provide the posterior mode and an approx-

imate posterior covariance matrix for β (Gamerman, 1996). Then, like before, combining the normal

prior for β with a normal likelihood of the transformed observations ỹ(β) ∼ N(Xβ,W−1(β(t−1)) results

in the approximate posterior distribution with parameters given in (5.1) and (5.2). The iterative method

is summarized as follows:

1) start with β(0) and set t = 1;

2) propose β? by sampling from the proposal distribution – the approximate posterior distribution;

3) accept β? with probability r in equation (3). If accepted, set β(t) = β?;

4) increase t by 1 and return to step 2.

An important note that should be made is that even though the proposal distribution J(β), which is

the approximate posterior distribution, is a normal distribution, its parameters m(t) and C(t) depend on

the previous iterate β(t−1), and therefore is not symmetric, i.e. J(β(t) | β(t−1)) 6= J(β(t−1) | β(t)). This

will require the correction factor in computing the acceptance rate r in step 3. The construction of m(t)

and C(t) yields the posterior mode and an approximate posterior covariance matrix for β. Because of

this, the acceptance rate in this method is extremely high, usually 90% and higher, but also keeps the

correlation low, and this is the benefit of using this method.
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3 Simulations

This section will contain examples to illustrate the ideas in section 2. We first look at the Gibbs

sampler introduced in section 2.2 and display the results. Then, an example of the Metropolis–Hastings

algorithm is simulated in section 3.2 with results. The last simulation in this paper will be the Bayesian

version of the iterative re–weighted least squares under the GLM framework.

3.1 Gibbs Sampling

The first simulation is to demonstrate Gibbs Sampling. To do this, let Y1, ..., Yn be a random sample

from N(µ, σ2). This will constitute our likelihood used in equation (1). Suppose we have prior belief on

the unknown parameters µ and σ2 that causes us to specify the following prior distributions:

µ|σ2 ∼ N

(
µ0,

σ2

n0

)
and σ2 ∼ IG

(
α

2
,
β

2

)
.

Under this formulation and using equation (1), the joint posterior distribution becomes

f(µ, σ2|y) ∝ f(y|µ, σ2)π(µ, σ2) = f(y|µ, σ2)π(µ|σ2)π(σ2)

∝
n∏
i=1

(
σ2
)− 1

2 exp

{
− 1

2σ2
(yi − µ)2

}
·
(
σ2
)− 1

2 exp
{
− n0

2σ2
(µ− µ0)2

}
·
(
σ2
)−α

2
−1

exp

{
− β

2σ2

}

=
(
σ2
)−n+α+1

2
−1

exp

{
− 1

2σ2

[
n∑
i=1

(yi − µ)2 + n0(µ− µ0)2 + β

]}

=
(
σ2
)−n+α+1

2
−1

exp

{
− 1

2σ2

[
n∑
i=1

y2
i + n0µ

2
0 + β

]}
·

exp

{
−n+ n0

2σ2

[
µ2 − 2µ

ny + n0µ0

n+ n0

+

(
ny + n0µ0

n+ n0

)2

−
(
ny + n0µ0

n+ n0

)2
]}

=
(
σ2
)−n+α+1

2
−1

exp

{
− 1

2σ2

[
n∑
i=1

y2
i + n0µ

2
0 + β − (ny + n0µ0)2

n+ n0

]}
·

exp

{
−n+ n0

2σ2

(
µ− ny + n0µ0

n+ n0

)2
}
.
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Then, we easily see that the posterior distribution for µ is

f(µ|σ2,y) ∝ exp

{
−n+ n0

2σ2

(
µ− ny + n0µ0

n+ n0

)2
}
,

and by integrating out µ from the joint posterior distribution above, we have

f(σ2|y) ∝
∫
f(µ, σ2|y)dµ ∝

(
σ2
)−n+α

2
−1

exp

{
− 1

2σ2

[
n∑
i=1

y2
i + n0µ

2
0 + β − (ny + n0µ0)2

n+ n0

]}
.

Therefore, the posterior distributions for our unknown parameters are

µ|σ2,y ∼ N

(
ny + n0µ0

n+ n0

,
σ2

n+ n0

)
σ2|y ∼ IG

(
n+ α

2
,

∑n
i=1 y

2
i + n0µ

2
0 + β

2
− (ny + n0µ0)2

2(n+ n0)

)
.

Notice that the posterior distribution’s parameters have an intuitive meaning. The mean of the posterior

for µ is a weighted average of the prior mean and the sample mean and its variance is σ2 scaled by the

sample size, where n0 can be thought of as a prior sample size. The parameters for the posterior of σ2 has

similar meanings. We ran a simulation implementing the Gibbs Sampling algorithm discussed in section

2.2 of paper with a sample size of 250 observations, 1000 iterations of 10,000 samples of µ and σ2 in each

iteration. Figure 1 below displays the results:

Gibbs Sampling

Parameter True values Estimates Std. Error

µ 2.3 2.2965 0.05684

σ2 0.8 0.8117 0.07305

Figure 1: Results of Gibbs sampling

Now, let us see what happens when the posteriors are not obtainable.
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3.2 Metropolis–Hastings

The next simulation is to demonstrate the Metropolis–Hastings algorithm discussed in section 2.3. To

do this, assume the situation as in the first simulation, i.e. Y1, ..., Yn is a random sample from N(µ, σ2)

and µ and σ2 are assumed to have the following prior distributions:

µ|σ2 ∼ N

(
µ0,

σ2

n0

)
and σ2 ∼ IG

(
α

2
,
β

2

)
.

Then, the joint distribution for µ and σ2 is

f(µ, σ2|y) ∝ f(y|µ, σ2)π(µ, σ2) = f(y|µ, σ2)π(µ|σ2)π(σ2)

∝
n∏
i=1

(
σ2
)− 1

2 exp

{
− 1

2σ2
(yi − µ)2

}
·
(
σ2
)− 1

2 exp
{
− n0

2σ2
(µ− µ0)2

}
·
(
σ2
)−α

2
−1

exp

{
− β

2σ2

}
.

We have shown in the first simulation that closed forms for the posterior distributions is obtainable, but

for the sake of demonstration, assume not. Therefore, we have the posterior distributions of µ and σ2 are

f(µ|σ2,y) ∝ f(y|µ, σ2)π(µ|σ2)

=
n∏
i=1

(
σ2
)− 1

2 exp

{
− 1

2σ2
(yi − µ)2

}
·
(
σ2
)− 1

2 exp
{
− n0

2σ2
(µ− µ0)2

}
=
(
σ2
)−n+1

2 exp

{
− 1

2σ2

[
n∑
i=1

(yi − µ)2 + n0(µ− µ0)2

]}

and

f(σ2|µ,y) ∝ f(y|µ, σ2)π(µ|σ2)π(σ2)

=
n∏
i=1

(
σ2
)− 1

2 exp

{
− 1

2σ2
(yi − µ)2

}
·
(
σ2
)− 1

2 exp
{
− n0

2σ2
(µ− µ0)2

}
·
(
σ2
)−α

2
−1

exp

{
− β

2σ2

}

=
(
σ2
)−n+α+1

2
−1

exp

{
− 1

2σ2

[
n∑
i=1

(yi − µ)2 + n0(µ− µ0)2 + β

]}
.
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We ran a simulation with a sample size of 250 observations, 1000 iterations of 10,000 samples of µ and

σ2. Figure 2 below displays the results:

Metropolis–Hastings

Parameter True values Estimates Std. Error

µ 2.3 2.2940 0.05817

σ2 0.8 0.8148 0.07989

Figure 2: Results of Metropolis–Hastings

The acceptance rate for µ and σ2 were both roughly 22%. Adjusting the parameters of the proposal

distribution, which was chosen to be a normal distribution for each, gave this acceptance rate to allow for

quick convergence and keeping correlation in the sequence low. In certain situations, a normal distribution

is not a good proposal distribution, and in fact, finding a good proposal distribution can be very difficult

at times. Now we simulate the Bayesian version of IRWLS discussed in section 2.5 to demonstrate a fix

to this problem.

3.3 Bayesian IRWLS

In this simulation, we will use the methodology discussed in section 2.5. Let us assume that the

observations are non-negative measurements of individuals who are placed into groups. Therefore a

reasonable distributional assumption for individual i in group j of size cj is Cij ∼ Gamma(α, µij/α),

where µij/α is the scale parameter, i = 1, ..., cj and j = 1, ..., J . Notice that this distribution can be
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written as

fCij =
1

Γ(α)

(µij
α

)−α
Cα−1
ij exp

{
−αCij
µij

}
= exp

{
− 1
µij
Cij − log µij

1/α
+ α logα− log Γ(α) + (α− 1) log Cij

}
. (6)

Therefore, this distribution is a member of the exponential family. We also wish to include covariate

information about each individual, and thus relate the mean of the distribution above to these covariates

by a link function. Since the mean µij must be positive valued, we use a log link to relate the mean to

the covariate information, i.e.

log µij = X′ijβ.

Then, our likelihood function above can be written in the form

fCij = exp

{
−e−X′

ijβCij −X′ijβ

1/α
+ α logα− log Γ (α) + (α− 1) log Cij

}
.

We specify the independent prior distributions

β ∼MVN(β0,Σ) and α ∼ Exp(λ).

Notice here that the parameters of interest are α and β, and so the joint posterior distribution is

f(α,β|C) ∝
J∏
j=1

cj∏
i=1

exp

{
−e−X′

ijβCij −X′ijβ

1/α
+ α logα− log Γ (α) + (α− 1) log Cij

}
·

exp

{
−1

2
(β − β0)′Σ−1(β − β0)

}
· exp

{
−α
λ

}
.

From here, we see that the posterior distributions will not be of any known form. The posterior distri-

bution for α is

f(α|β,C) ∝ exp {αγ +N(α logα− log Γ(α))} ,
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where N =
∑J

j=1 cj and

γ =
J∑
j=1

cj∑
i=1

−e−X′
ijβCij −

J∑
j=1

cj∑
i=1

X′ijβ +
J∑
j=1

cj∑
i=1

log Cij −
1

λ
.

Also, the posterior distribution for β is

f(β|α,C) ∝ exp

{
−α

(
J∑
j=1

cj∑
i=1

e−X
′
ijβCij +

J∑
j=1

cj∑
i=1

X′ijβ

)
− 1

2
(β − β0)′Σ−1(β − β0)

}
.

Now that we have the posterior distributions for the unknown parameters α and β, we wish to implement

the Metropolis–Hastings algorithm. The proposal distribution used for α is simply

α? ∼ exp
{
N(logα(t−1), σ2

(t−1))
}
,

where we exponentiate a normal random variable centered around the log of the previous iterate in order

to keep α positive valued. Also, σ2
(t−1) acts a tuning parameter to allow for decent acceptance rates as

previously discussed. As for the proposal distribution for β, we use the methodology discussed in section

2.5. By comparing equations (4) and (6), we see

θij = − 1

µij
and b(θij) = log µij = − log(−θij).

Therefore, we have that

b′′(θij) =
1

θ2
ij

= µ2
ij = exp{2X′ijβ} and g′(µij)

2 = exp{−2X′ijβ},

and so the weight matrix is W(β) = IN×N . Lastly, we find the transformed observations to be

C̃ij(β) = ηij + (Cij − µij)g′(µij) = X′ijβ + (Cij − exp(X′ijβ))
1

exp(X′ijβ)
.

This gives the proposal distribution for β to be a normal distribution with parameters

m(t) =
(
R−1 + αX′X

)−1 ×
(
R−1a + αX′C̃(β(t−1))

)
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and

C(t) =
(
R−1 + αX′X

)−1
.

From here, we use these proposal distributions for α and β to propose a new value of each in each iteration

of the Metropolis–Hastings algorithm. We ran a simulation of 1000 data sets, 10000 iterations per data

set, and a sample size of 100 observations. The results of this simulation can be seen below:

Metropolis–Hastings

Parameter True values Estimates

α 5 4.992035

β (−3, 2, 1.1) (−2.999, 2.0002, 1.0995)

Figure 3: Results of BIRWLS

The acceptance rate for α was roughly 23.4% and β had a 97.5% acceptance rate.

4 Discussion

In this paper, we have introduced Bayesian statistics and, if successful, motivated its usefulness. We

have also discussed three sampling techniques commonly used by Bayesians and ran simulations to verify

their validity. While Bayesian inference is an extremely important, and quickly evolving, field of statistics,

it comes with drawbacks as does any statistical method. The computation time used in these sampling

techniques can often be highly expensive. Also, including incorrect prior knowledge into the model can

greatly affect inference by drawing samples in the wrong part of the parameter space. However, with

good prior knowledge and efficient code, Bayesian inference can be a great tool.
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